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Pattern formation and localization in the forced-damped Fermi-Pasta-Ulam lattice
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We study spatial pattern formation and energy localization in the dynamics of an anharmonic chain with
quadratic and quartic intersite potential, subject to an optical, sinusoidally oscillating field and a weak damp-
ing. The zone-boundary mode is stable and locked to the driving field below a critical forcing that we
determine analytically using an approximate model, which describes mode interactions. Above such a forcing,
a standing modulated wave forms for driving frequencies below the band edge, while a ‘‘multibreather’’ state
develops at higher frequencies. Of the former, we give an explicit approximate analytical expression, which
compares well with numerical data. At higher forcing, space-time chaotic patterns are observed.
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I. INTRODUCTION

The dynamics of classical anharmonic lattices display
rich variety of features. Already the simplest models, like
one-dimensional chain of equal-mass oscillators w
nearest-neighbors nonlinear forces, exhibit nontrivial so
tions like anharmonic waves@1,2#, discrete solitons@3#, and
breathers@4#. Due to its simplicity, one of the most widel
studied examples in this class is the celebrated Fermi-Pa
Ulam ~FPU! model@5#, where the interparticle potential is
simple fourth-order polynomial in the relative displacemen
Many investigations have focused on the process of ene
equipartition among phonons, after having fed the ene
into long wavelength modes, whose instability leads to
generation of solitons@6#. More recently the complementar
case where the energy is placed into the highest freque
mode has been considered@7–9#. Above a certain energy
threshold, which vanishes as 1/N, N being the number of
oscillators, this mode becomes modulationally unsta
@11,12#, leading to the growth of spatial modulations of th
displacement field with a given finite wavelength. The su
sequent evolution consists of the creation of localized str
tures ~envelope solitons!, which interact inelastically and
coalesce in a few, large amplitude breathers@10#. These
have, however, a finite lifetime and decay slowly until t
asymptotic state of energy equipartition is attained.

Up to now, processes of this kind have been stud
mainly for Hamiltonian lattices, and a quite natural quest
is to ask how such phenomena are affected by both forc
and/or dissipative mechanisms that may arise from the p
ence of an external field and the interaction with other
grees of freedom, respectively. These issues were addre
by Rössler and Page@13#, who found that localized mode
can indeed exist in a sinusoidally driven, undamped F
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chain. More recently, the same authors performed deta
studies of the optical generation of such excitations under
action of suitable impulsive fields@14#. Later on, investiga-
tions of models of driven-damped antiferromagnetic cha
@15# opened also the way to some experiments, whose
comes are interpreted as manifestations of intrinsic local
tion @16#. Theoretical studies of the parametrically drive
discrete, nonlinear Schro¨dinger equation@18# and of coupled
oscillator systems@17# have also been recently undertak
and led to the discovery of periodic, quasiperiodic, and e
chaotic breathers.

However, the relation between the phenomena obser
in the Hamiltonian case with those appearing for force
damped lattices has not yet been studied in detail. Indeed
expect significative differences due to the creation of stati
ary states with nontrivial spatial structures, i.e., pattern f
mation @20,21#. In our context, having already studied th
process of formation of stable localized structures aris
from modulational instability in the conservative case@8#, we
are strongly motivated to see how the presence of forc
and damping affects this process. To remain close to
Hamiltonian case, we restrict ourselves to the case of sm
damping.

Various types of forcing are in principle possible, depen
ing on the physical situation under study. However, a gen
requirement for localization is to excite band-edge mod
For Klein-Gordon lattices this is naturally realized using
spatially uniform driving field, which has been shown to i
duce interesting pattern formation phenomena@19#. On the
other hand, this forcing would be uneffective for FPU la
tices because, due to the symmetry of the Hamiltonian,
zero mode is decoupled~see below!. Alternatively, since spa-
tial localization appears from the instability of band-ed
modes, we choose in this paper to drive the system at
zone-boundary wavelength. Moreover, we consider the s
plest case in which the driving field oscillates sinusoidally
time.

In Sec. II we introduce the model and further comment
some of its features. After introducing a specific mode e
pansion of the displacement field, we obtain approxim
equations of motion for such modes in the weak damp

r-
s:
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limit. Some details of the numerical simulations are p
sented as well as the quantities used to detect localiza
and to study spectral properties.

Section III deals with the full characterization of the we
forcing solution where the zone-boundary mode is locked
the driving field. By increasing the forcing parameter, suc
solution becomes unstable. Approximate values of the c
cal forcing and frequency are analytically computed and s
cessfully compared with numerical results.

Just beyond this instability more complex spatial patte
are attained by the system. For small enough frequenci
stable standing wave arises, which we describe analytic
by solving for the fixed point of a suitable truncated mo
expansion~Sec. IV!. When the driving frequency exceeds
given resonant value, a multibreather, spatially aperio
state is instead observed in numerical simulations~Sec. V!.

Section VI is devoted to some conclusions and to a b
discussion of the transition to chaos, which is observed
increasing the forcing.

II. THE FORCED AND DAMPED FPU MODEL

The equations of motion of the forced-damped FPU os
lator chain are

ün5un111un2122un1~un112un!31~un212un!32gu̇n

1 f cos~vt2pn!, ~1!

whereun denotes the displacement of thenth oscillator with
respect to its equilibrium position. Periodic boundary con
tions, un1N5un , are assumed, withN being the number of
oscillators. Dimensionless units are used such that
masses, the linear and nonlinear force constants, and the
tice spacing are taken equal to unity. The forcing and dam
ing strengths are gauged by the parametersf andg, respec-
tively, andv is the driving frequency. As already mentione
in the Introduction, the choice of the forcing with the shorte
wavelength is expected to favor the growth of localized
citations. Physically, the last term in Eq.~1! models the in-
teraction of a uniform electric field applied to a chain
alternating opposite charges; it can in fact be written
f (21)ncos(vt) @13#. Let us stress again that the more wide
studied case of uniform forcing@19# is not viable for models
like Eq. ~1!, because the zero mode is completely decoup
from the others as a consequence of the invariance of Eq~1!
under the transformationun→un1const.

In order to describe the forced oscillations of the system
is convenient to represent the displacement field in the fo

un5
1

2 (
k

@ake
i (vt1kn)1a2k

† e2 i (vt2kn)#, ~2!

whereak are complex mode amplitudes and2p,k<p the
corresponding wave number. Throughout the paper we
mainly focus our attention on the dynamics of the zon
boundary mode, which we refer to asp mode for the sake o
brevity.

The equations of motion for the amplitudesak’s are ob-
tained by substituting Eq.~2! into Eq. ~1!. Similarly to what
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is done for the undamped case@4#, a considerable simplifi-
cation is achieved by neglecting higher-order harmonics
are produced by the cubic terms~the so-called rotating wave
approximation!. Moreover, in the limit of weak dampingg
!v we find the following set of approximate equations:

22ivȧk2 ivgak5~vk
22v2!ak1dk,p f

16 (
q1 ,q2

Gq1 ,q2

k aq1
aq2

aq11q22k
1 , ~3!

wherevk
252(12cosk), dk,p is equal to 1 fork5p and 0

otherwise and

Gq1 ,q2

k 5
1

4
@11cos~q11q2!1cos~k2q2!1cos~k2q1!

2cosk2cosq12cosq22cos~k2q12q2!#.

Equations~3! correspond to the positive frequency projecti
in the base given in Eq.~2!, the negative frequency one
being obtained by replacingk→2k and taking the complex
conjugate.

In the following, we aim at comparing the analytical pr
dictions that can be drawn from the set of approximate eq
tions ~3! with the direct numerical simulations of model~1!.
We have integrated the equations of motion~1! by means of
a fourth-order Runge-Kutta algorithm with a step rangi
between 1022 and 1023. We have always chosen an initia
condition with all oscillators in their equilibrium position
un(0)50 and small~of the order of 1025) random Gaussian
distributed initial velocitiesu̇n(0). Several series of simula
tions have been performed for different values of the para
etersv andf and for fixedg50.1. The latter choice guaran
tees that the conditiong!v holds in the resonance region
close to the band edge, i.e.,uvu;vp52, which is of main
interest here. Furthermore, the resulting time scales are
sonably short to allow a real-time analysis for chains as lo
asN5512. Nonetheless, some of the results reported be
have been checked also for another series of simulations
formed withg50.01.

We have monitored the energy density along the chai

hn5
1

2
u̇n

21
1

2
@~un112un!21~un2un21!2#1

1

4
@~un112un!4

1~un2un21!4#, ~4!

as well as the spectrum of mode energies

«k5uU̇ku21v2uUku2, ~5!

where

Uk5
1

AN
(
n51

N

uneikn5
AN

2
~ake

ivt1a2k
1 e2 ivt! ~6!

is the amplitude of thekth Fourier mode, which can be effi
ciently computed using a standard fast fourier transform r
tine. In the limit in which theak’s are slowly varying with
6-2
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respect to the forcing or reach a stationary value, one fi
that «k5Nv2uaku2 is constant in time. On the other han
when monitoring quantities likehn and/orun it is convenient
to observe the system at time intervals that are integer m
tiples of the driving period.

III. MODULATIONAL INSTABILITY OF THE p MODE

Let us begin by considering solutions where only thep
mode is excited. Such solutions are numerically observe
exist and be stable below a certain critical forcingf cr that
depends on bothv andg. Indeed, in the typical simulation
described at the end of the previous section, all modes w
kÞp damp out on a time scale set by the value ofg while
uapu rapidly grows and finally appoaches a constant val
Such an asymptotic amplitudeap is obtained by solving for
the stationary solution of Eqs.~3!, which corresponds to an
oscillation locked to the driving field with a constant pha
lag. We get

ap5
f

v224212uapu22 igv
, ~7!

and writingap5uapuexp(iup) one obtains

up5atanS gv

v224212uapu2
D , ~8!

where the squared modulusz5uapu2 is the solution of the
cubic equation

144z3224~42v2!z21@~42v2!21g2v2#z5 f 2. ~9!

One can easily ascertain that the latter admits a single
root only for uvu,v* where v* .21A3g/2, while three
distinct roots may otherwise exist~see the discussion in th
following!.

Before treating in detail the differences between the t
cases, let us address the question of stability. This is acc
plished by solving the set of equations obtained lineariz
Eqs. ~3! around the stationary solutions~i.e., neglecting all
interaction terms that are nonlinear in theak’s!

22ivȧk2 ivgak5~ṽk
22v2!ak13vk

2ap
2 a2k

† , ~10!

where

ṽk
25~116uapu2!vk

2 ~11!

is the frequency of thekth mode shifted by the interactio
with the p mode. As usual, Eq.~10!, together with its com-
plex conjugate, is solved looking for solutions of the for
exp(nkt). The relevant branch of the eigenvalue spectr
reads

nk52
g

2
1

1

2uvu
A9vk

4uapu42~ṽk
22v2!2. ~12!

The growth rate Re$nk% is maximal when the square root i
the above expression attains its maximum value, i.e., w
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the resonance conditionv5ṽk
*

holds @22#. The latter, to-
gether with definition~11!, fixes the value of the wave num
ber k* of the most unstable mode as

cosk* 512
v2

2~116uapu2!
. ~13!

In the case in which a single real root of Eq.~9! exists
~i.e., uvu,v* ), the threshold for modulational instability ca
be computed explicitly. Indeed, by lettingnk50 in Eq. ~12!
and using formula~13!, one gets

uapucr
2 5

g

3~v22g!
. ~14!

Finally, from formula~7! one derives the value of the critica
forcing

f cr5A g

3~v22g! H Fv22
4~v2g!

v22g G2

1g2v2J . ~15!

In the case where three solutions exist (uvu.v* ), the
stability properties must be considered separately for eac
them. Let us discuss this issue with reference to the casv
52.4, illustrated by the graph in Fig. 1. Here the three so
tions, which we labelA, B, andC, coexist in the rangef 1

, f , f 2 . The values off 6 can be computed from Eq.~9!,
since they correspond to the amplitudes

uap
6u25

2~v224!6A~v224!223g2v2

36
. ~16!

Hence, from formula~7! we obtain

f 65uap
6uA~v224212uap

6u2!21g2v2. ~17!

FIG. 1. Squared amplitude of the multiple fixed-point solutio
vs the forcingf for v52.4 andg50.1. The solid vertical line rep-
resents the critical value of the forcingf cr

int50.224. Dashed lines are
the boundaries for the rangef 1, f , f 2 where three solutions exist
The lettersA, B, C denote the three solutions from the smallest
the highest amplitude.
6-3
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Looking at the spectrum~12!, it turns out that the larges
amplitude solutionC is always modulationally unstable. Th
intermediate amplitude solutionB is modulationally unstable
aboveuapu25(v224)/24~corresponding tof 50.235 in Fig.
1! while it has the maximal growth rate at6p below this
point. The smaller amplitude solutionA is instead found to
be always stable. Since we choose to run the dynamics s
ing always with almost zero mode amplitudes, it would
natural to conclude that the resulting trajectory converge
the solutionA up to its existence boundary and hence t
f cr5 f 2 . The numerical simulations show that this conc
sion is not actually correct. Indeed, the system approac
the stable solutionA only up to a critical value of the forcing
f cr

int , which is definitely smaller thanf 2 ~see the diamonds in
Fig. 1!. Beyond such a value, thep mode undergoes modu
lational instability similar to the previous case.

An interpretation of this phenomenon can be given in
following way. Let us consider the equations of motion f
the ‘‘internal’’ dynamics of thep mode that can be derive
from Eq. ~3!,

22ivȧp2 ivgap5~42v2!ap1 f 112apuapu2. ~18!

This nonlinear equation provides a good approximation
the dynamics as long as all the other modes are not sig
cantly excited. Its numerical solution indicates that forf

5 f cr
int(v) the initial conditionap(0)50,ȧp(0)50 exits the

basin of attraction of the fixed point corresponding to t
solutionA. Such a value corresponds pretty well to the act
critical forcing numerically determined for the full syste
~see the solid vertical line atf cr

int in Fig. 1!. In other words, at
f cr

int the dynamics leaves the lowest amplitude solutionA be-
cause of this internal instability and ‘‘jumps’’ into the modu
lationally unstable region. Since a fixed point will not b
subsequently approached, we do not expect that the co
sponding spectrum of growth rates will be described by f
mula ~12!. Nonetheless, a reasonable qualitative agreem
between the two is observed, being both characterized
sharp maximum around the most unstable mode with so
broadened band around it.

Finally, the results described above are summarized
Fig. 2, where we show the control parameter space (f ,v).
The dashed line foruvu,v* is the theoretical expressio
~15! for the modulational instability, valid when only on
solution is present. Atv* two full lines start, given by for-
mula ~17!, which bound the region where three solutio
occur. Inside this region, the dotted linef cr

int is the one ob-
tained numerically by looking at the internalp mode insta-
bility, as we have described above. The numerical data~full
triangles! were obtained by looking at the incipient modul
tional instability of the full system. An excellent agreeme
~within some percent! with the theoretical results is observe
in the considered frequency range. We have also chec
that the critical wave numberk* is accurately predicted by
Eq. ~13!. We thus conclude that both the theory develop
for the case of one solution and the approximate descrip
of the internal instability when three solution are present
basically correct.
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IV. STANDING NONLINEAR WAVES

Let us now describe the states forming just above
thresholdf cr after the development of the modulational i
stability. Two different behaviors appear depending
whether the driving frequency lies below or above a re
nance frequency, which for smallg is very close to the uppe
band edgev.2. In this section we discuss the first case.
expected from the spectrum~12!, the development of the
instability leads to a fast growth of the modes belonging
the unstable band aroundk* ~and also its harmonics, se
below!. Afterwards, the main band shrinks until the syste
saturates to the asymptotic state. The result is basical
modulated standing wave locked in time with the forci
field ~see the example illustrated in Fig. 3! and the wave
number of the modulation is indeed very close to the
pected valuep2k* with k* given by Eq.~13!. Furthermore,
this state appears to be stable, at least on the time s
considered in the simulations. For instance, the wave pro
shown in Fig. 3 remains unaltered up to 23105 time units,
i.e., for more than 63104 driving periods.

An approximate theoretical analysis can explain the f
mation of this pattern. Indeed, in view of the above results
is reasonable to look for a simplified description that negle
all the modes but thep mode and the most unstable one wi
wave numberk* . Under such assumptions and taking in
account the resonance condition we obtain from Eqs.~3! the
following coupled equations forap andak

*
:

22ivȧp2 ivgap5~42v2!ap1 f 112apuapu2

16vk
*

2 ap
1ak

*
a2k

*
112vk

*

2 apuak
*
u2.

22ivȧk
*
2 ivgak

*
53vk

*

2 ap
2 a2k

*

1 1
9

4
vk

*

4 ak
*
uak

*
u2.

~19!

FIG. 2. Control parameter plane (v, f ) for g50.1. The dashed
line for v,v* is the critical forcingf cr given by formula~15! at
which modulational instability occurs. The region forv.v* where
three solutions exist is bounded by the solid linesf 6 . The dotted
line within corresponds to the instability thresholdf cr

int evaluated
numerically from Eq.~18!. The full triangles are the numerical es
timates of f cr . Open circles left~right! of the v5v* line denote
points where standing waves~breathers! occur. The stars are som
parameter values for which chaos is detected.
6-4
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The first equation is nothing but the modified version of E
~18! with the interaction terms betweenp and k* modes
included. The stationary solutions are determined lett
ak

*
5uak

*
uexp(iuk

*
) and first solving the second one of Eq

~19!,

ua6k
*
u25

4

3vk
*

2
Auapu42uapucr

4 ,

sin 2~up2u6k
*
!52

uapucr
2

uapu2
. ~20!

Substituting the latter in the first one of Eqs.~19! we get the
stationary value ofuapu above threshold,

uapu2F S v224212uapu2216Auapu42uapucr
4

18
uapu42uapucr

4

uapu2
D 2

1~gv18Auapu42uapucr
4 !2G5 f 2.

~21!

Solving this equation, we can thus getua6k
*
u andu6k

*
from

Eq. ~20!. A fourth equation, which we do not explicitly dis
play here for the sake of brevity, allows to computeup

as well.

FIG. 3. Pattern generated after the modulational instability
v51.8, f 50.150 (f cr50.148). This pattern stabilizes att.104. In
the upper panel we show the energy density in a part of a chai
512 particles, in the lower panel the corresponding mode ene
spectrum in linear-log scale.
05660
.

g

The stationary solution obtained above corresponds
displacement field, which can be derived using expans
~2!,

un5uapu~21!ncos~vt1up!12uak
*
u

3cos~k* n!cos~vt1uk
*
!, ~22!

which is a standing modulated wave. These analytical res
are also in reasonable quantitative agreement with nume
data. For example, in the case of Fig. 3 (v51.8, f 50.150,
andg50.1) we get

uapu250.020 85, uak
*
u254.8831024 ~numerical!,

~23!

uapu250.020 85, uak
*
u254.2731024 ~ theoretical!.

~24!

the relative deviations being as expected of the orderg/v.
The above expressions are simplified close to the thre

old and sufficiently far from resonance. Indeed in this ca
up is vanishingly small@see Eq.~8!# and therefore one gets
from formulas~20!, uk

*
.p/4 and the approximate solution

un.uapu~21!ncos~vt !12uak
*
ucos~k* n!cosS vt1

p

4 D .

~25!

This solution compares well with numerical data. Looking
the pattern at times that are integer multiples of 2p/v, again
for the example of Fig. 3 with the values in formula~24!,

un.0.1437~21!n10.0292 cos~2.05n! ~ theoretical!,

un50.142~21!n10.0359 cos~2.025n! ~numerical!,
~26!

which shows a good agreement.
Before concluding this section, let us discuss the issue

higher-order corrections to the solution~22!. Indeed, besides
the main component atk* , the nonlinear terms induce th
presence of several~exponentially small! harmonics whose
wave number can be expressed as~recall that2p,k<p!

kn5k* n1~n21!p, n52, 3, . . . . ~27!

Their amplitudes can be computed perturbatively from
stationary solution of Eq.~3!. For instance, the first harmoni
(n52) is evaluated as a function ofap and ak

*
. We give

here for completeness the explicit expressions of the first
second harmonics.

uak2
u5

18 cosk* ~cosk* 21!

vk2

2 2v2
uapuuak

*
u2, ~28!

uak3
u5

3u126 cos2k* 12 cos3k* u

uvk3

2 2v2u
uak

*
u3. ~29!
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Higher-order harmonics (n.2) can be computed recursive
in a similar way obtaining the general result

akn
5

6

vkn

2 2v2 (
qn ,pn ,r n,kn

Gqn ,pn

kn aqn
apn

a2r n

† ,

qn1pn1r n5kn . ~30!

Notice that an infinite number of harmonics is expected he
This shows that the waves we are dealing with are m
general than those previously reported in the literature
damped-driven Klein-Gordon lattices@19#. In this latter case,
the modulation has a finite number of harmonics due to
peculiar mutual relationship among modes 0,p/2, and p
that allows for solution where no other modes are excite

V. MULTIBREATHER STATES

A different scenario is observed for driving frequen
above resonance, which we briefly describe here with re
ence to the casev52.4, illustrated in Fig. 4. The instability
described at end of Sec. III produces, on a relatively sh
time scale (t;102), a disordered assembly of sharply loca
ized structures in a similar way to what is observed for
undriven case@8,10#. On longer time scales (t;103), a fur-
ther stage follows in which the localized peaks arrange th
selves until they eventually reach an asymptotic state~see the
upper panel of Fig. 4!. This is a sort of ‘‘multibreather’’
state, i.e., an array ofunevenly spacedbreathers. Remark
ably, such a complex solution appears to be stable as
previously illustrated nonlinear wave. For instance, the p

FIG. 4. Multibreather pattern generated after the modulatio
instability for v52.4, f 50.2250 (f cr50.2245). This pattern stabi
lizes att.53103. In the upper panel we report the energy dens
in the lower panel the mode energy spectrum.
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tern in Fig. 4 has been observed to persist up to a time
3105, i.e., more than 73104 driving periods.

The corresponding displacement field in Fig. 5 reve
that each breather is pretty similar to the ‘‘even-parity’’ l
calized modes found in the Hamiltonian case@12#, the main
difference being the presence of ap mode background in-
duced by the field. No ‘‘odd-parity’’ mode is generated b
the above mechanism in all the examined cases. Actuall
closer inspection reveals that two distinct solutions
slightly different amplitude are present. Moreover, ap
from a small lag induced by the damping, the backgrou
oscillates always out of phase with respect to the field as
be ascertained by comparing the dotted line in Fig. 5 with
corresponding displacement pattern. On the contrary,
breathers are always in phase with the field. According
depending on the site on which they sit, they can have eq
or opposite relative phases. Although localized solutions
cillating out of phase with the field are known to exist
similar models@13#, they are not detected in the present co
text.

The inhomogeneous distribution of vibrational energy
distinctly reflected in the mode spectrum~see the lower pane
of Fig. 4!, which displays a localized structure and a ba
broadening as a consequence of the irregular spacing am
the breathers.

To give a more firm basis to our numerical observatio
it is useful to briefly point out some conclusions that can
drawn by a suitable continuum approximation of the FP
model. In analogy with the approach followed for the Ham
tonian case@10#, one can in fact write the displacement fie
as un5(21)nRe$c(x,t)exp(ivt)%, wherec is an envelope
function, which is assumed to be slowly varying in space a
time on scales of the order of the interatomic spacing and
driving period, respectively. A standard calculation leads
the driven-damped nonlinear Schro¨dinger equation

2ivċ1~42v21 ivg!c1cxx112cucu25 f , ~31!

which in the spatially uniform case reduces to Eq.~18! for
the p mode amplitude. Notice, however, that this type
description makes sense only when a relatively narr

l

,

FIG. 5. Displacement pattern corresponding to the case of
4. The dashed line is the instantaneous configuration of the driv
field showing relative phase relations.
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packet of modes close to6p is excited and is thus les
general than the one based on Eqs.~3!. For a suitable choice
of parameters, Eq.~31! admits two soliton solutions of dif-
ferent amplitudes@23# as well as stable multisoliton com
plexes arising from bifurcation of one of them@24#. Thus,
the localized states of Fig. 5 could be related to such s
tions, at least to the extent to which our lattice model can
approximated by a continuum equation like Eq.~31!. Al-
though a more quantitative comparison would be desira
this is a solid argument in support of the existence of sta
multibreather complexes.

VI. CONCLUSIONS AND PERSPECTIVES

We have confirmed that modulational instability of zon
boundary modes is a relevant mechanism for the genera
of nontrivial spatial structures in discrete anharmonic l
tices. Our results for the externally driven case complem
previous studies on Hamiltonian models and further sh
that the interplay of~almost! resonant forcing and dampin
can stabilize such structures. Our approximate analyt
framework has allowed also to derive the stability chart
the zone-boundary mode. For forcing frequencies be
resonance, a modulated wave is formed after instabi
whose approximate analytical expression we have derive
terms of mode amplitudes. For frequencies above reson
a ‘‘multibreather’’ state arises of which we have given
phenomenological characterization. There are other p
lems that could be attacked within this approach, like
interesting issue of destabilization of the modulated wa
This could also contribute to a better understanding of loc
ization mechanisms. Furthermore, this points out the po
bility of generating long-living and complex energy distrib
tions in space for real ionic crystals under the action
optical fields.

Let us also briefly comment on the fate of the two typic
spatial patterns described above. As expected, increasin
forcing leads to their destabilization and eventually to
transition to chaos~see the stars in Fig. 2 as well as Fig. 6!.
This bears a strong analogy with theparametricallydriven
damped nonlinear Schro¨dinger equation where stable pa
terns precede the onset of chaotic behavior@25#. This is a
further indication that a considerable insight on the dynam
of the discrete model may be achieved from Eq.~31!. Be-
sides this, it has been suggested on quite general ground
systems obeying the symmetryun→un1const. should show
an abrupt transition to a soft-turbulent state without displ
05660
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nt
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al
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w
,
in
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e
.
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f

l
the
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hat
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ing any intermediate spatial pattern@26#. This is in apparent
contradiction with the existence of stable patterns found
our numerics. On the other hand, performing simulations
g50, the transition to chaos occurs as soon asf Þ0, since
the modulational pattern does not attain any regu
asymptotic state. We can therefore conjecture that the p
ence of friction alters the nature of the transition in a w
that remains to be understood.
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FIG. 6. Chaotic state obtained forv51.8, f 50.27. In the upper
panel we show a snapshot of the energy density along the cha
t55200 and in the lower panel the corresponding mode ene
spectrum in linear-log scale.
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